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Abstract
We consider hydrodynamic systems which possess a local Hamiltonian
structure. To such a system, there are also associated an infinite number
of nonlocal Hamiltonian structures. We give the necessary and sufficient
conditions so that, after a nonlinear transformation of the independent variables,
the reciprocal system still possesses a local Hamiltonian structure. We show
that, under our hypotheses, bi-Hamiltonicity is preserved by the reciprocal
transformation. Finally, we apply such results to the reciprocal systems of
genus g Whitham–KdV modulation equations.

PACS number: 47.10.Df
Mathematics Subject Classification: 37K05, 37K20, 35F20, 35L60

1. Introduction

Systems of hydrodynamic type that admit Riemann invariants are a class of quasilinear
evolutionary PDEs of the form

ui
t = vi(u)ui

x, i = 1, . . . , n, (1)

where u = (u1, . . . , un) (see, e.g. [2, 5–7, 25, 28, 29]). Systems (1) admit a local Hamiltonian
structure if there exists a non-degenerate flat diagonal metric gii(u)(dui)2 solution to [29]

∂j ln
√

gii(u) = ∂jv
i(u)

vj (u) − vi(u)
. (2)

The corresponding Hamiltonian operator

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
, gii = 1/gii, (3)
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with �i
jk(u) the Christoffel symbols of the metric gii(u), defines a Poisson bracket on

functionals

{A,B} =
∫

δA

δui(x)
J ij δA

δuk(x)
dx.

Such local Hamiltonian structures were introduced by Dubrovin–Novikov [5] and we refer to
(3) as DN Hamiltonian structures. The Hamiltonian form of equation (1) is

ui
t = {ui,H } = J ij (u)∂jh(u) = vi(u)ui

x, i = 1, . . . , n, (4)

where H = ∫
h(u) dx is the Hamiltonian. System (4) possesses an infinite number of

conservation laws and commuting flows and it is integrable through the generalized hodograph
transform [29]. Formula (2) is crucial for the integrability property of diagonal Hamiltonian
systems: if one interprets it as an overdetermined system on n unknown functions vi(u)

(gii(u) given), one can generate for any other solution wi(u), a symmetry ui
τ = wi(u)ui

x

of (4), namely
(
ui

t

)
τ

= (
ui

τ

)
t
. One can prove the completeness property of this class of

symmetries which implies integrability [29]. For any symmetry wi(u) of the Hamiltonian
system (3), one can define the metric g̃ii (u) = (wi(u))2gii(u), which is still flat and it is
related to the metric gii(u) by a Combescure transformation.

From a differential geometric point of view, a non-degenerate flat diagonal metric is
equivalent to giving an orthogonal coordinate system on a flat space. Locally, this coordinate
system is parameterized by n(n−1)/2 functions of two variables. The problem of determining
orthogonal coordinate systems dates back to the 19th century (see [31] and references therein).
In the case n = 2 the problem has been solved classically, while it is still open for n � 3.
Zakharov [31] showed that the problem can be solved by the dressing method.

All nontrivial examples of flat metrics have been obtained in the framework of the theory
of Frobenius manifolds [2, 4], when the metric is of Egorov type. We recall that a metric
gii(u) is Egorov, if its rotation coefficients

βij (u) ≡ ∂i

√
gjj (u)√
gii(u)

, i �= j

are symmetric, namely βij (u) = βji(u). The equations of zero curvature for the metric gii(u)

can be written in terms of the rotation coefficients βij (u) in the form

R
ij

ik(u) = − 1√
gii(u)gjj (u)

[∂kβij (u) − βik(u)βkj (u)] = 0

and

Rik
ik (u) = − 1√

gii(u)gkk(u)


∂iβij (u) + ∂jβji(u) +

∑
m�=i,j

βmi(u)βmj (u)


 = 0,

where R
ij

ik(u) are the non vanishing elements of the Riemannian curvature tensor.
In this paper, we address the problem of finding nontrivial examples of flat metric not of

Egorov type, applying reciprocal transformations to the Hamiltonian structures of DN systems.
Indeed any DN system also possesses an infinite number of nonlocal Hamiltonian

structures (see [10, 12, 21, 22]), since equation (2) defines gii(u) up to a multiple gii(u)/f i(ui),
where f i(ui) is an arbitrary function of ui . Although the metric gii(u) may happen to be flat
for a particular choice of f i(ui), it will not be flat in general. In particular, if the metric gii(u)

is of constant Riemannian curvature c or conformally flat with curvature tensor

R
ij

ij (u) = wi(u) + wj(u), i �= j, (5)
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where wi(u) satisfy (2), then the Hamiltonian operator associated to (1) is nonlocal and takes
the special form

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
+ cui

x

(
d

dx

)−1

uj
x,

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
+ wi(u)ui

x

(
d

dx

)−1

uj
x + ui

x

(
d

dx

)−1

wj(u)uj
x,

(6)

respectively. The first operator was introduced by Ferapontov and Mokhov [12], while the
second one by Ferapontov [10].

Reciprocal transformations are a class of transformations of the independent variables
and were introduced in gas dynamic [27]. Assuming that the DN hydrodynamic system (1)
admits conservation laws

B(u)t = A(u)x, N(u)t = M(u)x,

with B(u)M(u)−A(u)N(u) �= 0, then we can perform a change of the independent variables
(x, t) → (x̂(x, t,u), t̂(x, t,u) by the relations

dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt.

Then the reciprocal system

ui
t̂
= B(u)vi(u) − A(u)

M(u) − N(u)vi(u)
ui

x̂ = v̂i (u)ui
x̂ ,

is clearly a system of hydrodynamic type.
Since reciprocal transformations map conservation laws to conservation laws, it is natural

to investigate their effect on the corresponding Hamiltonian structure. The reciprocal metric
is given by the formula

ĝii (u) =
(

M(u) − N(u)vi(u)

B(u)M(u) − A(u)N(u)

)2

gii(u)

and clearly if gii(u) is flat, ĝii (u) is in general not flat. Linear reciprocal transformations,
namely when B(u), A(u),M(u) and N(u) are constants, preserve flatness of the metric
and locality of DN Hamiltonian operators (see Tsarev [29] and Pavlov [26]). In the case
of nonlinear reciprocal transformations [13], Ferapontov and Pavlov have proven that the
reciprocal to a flat metric is, in general, conformally flat. Moreover, Ferapontov [10] gave
the necessary and sufficient condition for the reciprocal to a flat metric to be a constant
curvature in case the reciprocal transformation is a linear combination of the Casimirs,
momentum and the Hamiltonian density.

In a recent paper [1], we have proven that the Camassa–Holm (CH) modulation equations
admit a local bi-Hamiltonian structure of DN type and the corresponding flat metrics are
reciprocal to the constant curvature and conformally flat metric of the Korteweg–de Vries
(KdV) modulation equations. It is remarkable that none of the metrics of CH Hamiltonian
structures is of Egorov type. For the above reasons, we are interested in a systematic
investigation on the conditions under which the reciprocal to a (non)-flat metric is flat.

In this paper, we work out the necessary and sufficient conditions for the reciprocal metric
to be flat, when the initial metric is either flat or of constant curvature or conformally flat. The
necessary and sufficient conditions for reciprocal flat metrics of sections 4–6 can be applied to
search new examples of flat metrics on Hurwitz spaces. As a byproduct, we obtain nontrivial
examples of flat metrics which are non-Egorov on the moduli space of hyperelliptic Riemann
surfaces.



10772 S Abenda and T Grava

Finally, supposing that the initial system is bi-Hamiltonian, namely it possesses two
compatible Hamiltonian operators (see [2, 4, 8, 11, 15, 20, 23, 24]), we give sufficient
conditions such that the reciprocal hydrodynamic system is bi-Hamiltonian as well. We recall
that bi-Hamiltonicity is preserved by linear transformations [30].

The plan of the paper is as follows. In section 2, we set the notation and compute
the reciprocal Riemannian curvature tensor and the reciprocal Hamiltonian structure for any
metric associated to the initial system. In section 3, we give sufficient conditions for the
bi-Hamiltonicity of the reciprocal to a bi-Hamiltonian system when the transformation is
nonlinear. In sections 4 and 5, we consider the case of reciprocal transformations in x
(respectively t) and present the complete set of the necessary and sufficient conditions for the
reciprocal metric to be flat, when the initial metric is either flat or of constant curvature or
conformally flat (respectively flat). In section 7, we consider reciprocal transformations of
both variables x and t and give sufficient conditions for the reciprocal metric to be flat, when
the initial metric is either flat or of constant curvature or conformally flat. All of the necessary
and sufficient conditions in sections 5–7 are expressed in Riemann invariants of the initial
system and are compatible with the results in [10], where applicable.

Finally, in section 8, we give examples of flat reciprocal metrics on the moduli space of
hyperelliptic Riemann surfaces. In particular, we relate by a reciprocal transformation the
genus g Whitham–KdV hierarchy to the genus g Whitham–Camassa–Holm hierarchy.

2. The reciprocal Hamiltonian structure

In the following, we consider a DN Hamiltonian hydrodynamic system in Riemann invariants
as in (3)

ui
t = vi(u)ui

x. (7)

Let gii(u) be a non-degenerate metric such that for convenient f i(ui), i = 1, . . . , n,
gii(u)f i(ui) is a flat metric associated to the local Hamiltonian operator of system (7).
Let Hi(u), βij (u) and �i

jk(u) be, respectively, the Lamé coefficients, the rotation coefficients
and the Christoffel symbol of a diagonal non-degenerate metric gii(u) associated to (1),

Hi(u) =
√

gii(u), βij (u) = ∂iHj (u)

Hi(u)
, i �= j,

�i
jk(u) = 1

2
gim(u)

(
∂gmk(u)

∂uj
+

∂gmj (u)

∂uk
− ∂gkj (u)

∂um

)
,

then R
ij

ik(u) = 0, (i �= j �= k �= i) and the nonzero elements of the Riemannian curvature
tensor are

Rik
ik (u) = − �ik(u)

Hi(u)Hk(u)
≡
∑
(l)

εlwi
(l)(u)wk

(l)(u), i �= k, (8)

where εl = ±1, wi
(l)(u) are affinors of the metric and

�ik(u) = ∂iβik(u) + ∂kβki(u) +
∑

m�=i,k

βmi(u)βmk(u),

and the Hamiltonian operator associated to gii(u) is of nonlocal type [10, 12]

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
+
∑

l

ε(l)wi
(l)(u)ui

x

(
d

dx

)−1

w
j

(l)(u)uj
x. (9)

If gii(u) is either flat or of constant curvature or conformally flat, R
ij

ij (u) is either zero or
constant or as in (5) and J ij (u) takes the form (3) or (6), respectively.
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Given conservation laws

B(u)t = A(u)x, N(u)t = M(u)x

for system (7), a reciprocal transformation of the independent variables x, t is defined by [27]

dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt. (10)

Then, the reciprocal system

ui
t̂
= v̂i (u)ui

x̂ = B(u)vi(u) − A(u)

M(u) − N(u)vi(u)
ui

x̂ (11)

is still Hamiltonian with Ĵ ij (u) Hamiltonian operator associated to the reciprocal metric

ĝii (u) =
(

M(u) − N(u)vi(u)

B(u)M(u) − A(u)N(u)

)2

gii(u). (12)

Let Ĥi(u), β̂ij (u), �̂i
jk(u) and R̂

ij

km(u) be the Lamé coefficients, the rotation coefficients and
the Christoffel symbol for the reciprocal metric ĝii (u) respectively. In the following, we
compute their expressions and that of the operator Ĵ ij . In [13], Ferapontov and Pavlov have
characterized the tensor of the reciprocal Riemannian curvature and the reciprocal Hamiltonian
structure when the initial metric gii(u) is flat. To simplify notations, we drop the u-dependence
in the lengthy formulae.

Theorem 2.1. Let gii(u) be the contravariant diagonal metric as above for the Hamiltonian
system (7) with Riemannian curvature tensor as in (8) or (5). Then, for the contravariant
reciprocal metric ĝii (u) = 1/ĝii(u) defined in (12), the only possible nonzero components of
the reciprocal Riemannian curvature tensor are

R̂ik
ik (u) = HiHk

ĤiĤk

Rik
ik − (∇B)2 +

Hk

Ĥk

∇k∇kB +
Hi

Ĥi

∇ i∇iB − v̂kv̂i (∇N)2

+ v̂k Hi

Ĥi

∇ i∇iN + v̂i Hk

Ĥk

∇k∇kN − (v̂k + v̂i )〈∇B,∇N〉, i �= k, (13)

where

〈∇B(u),∇N(u)〉 =
∑
m

gmm(u)∂mB(u)∂mN(u),

∇ i∇iB(u) = gii(u)

(
∂2
i B(u) −

∑
m

�m
ii (u)∂mB(u)

)
,

∇ i∇jB(u) = gii(u)
(
∂i∂jB(u) − �i

ij (u)∂iB(u) − �
j

ij (u)∂jB(u)
)
.

Proof. To compute the reciprocal Riemannian curvature tensor, we first compute the reciprocal
rotation coefficients. Since the initial system is Hamiltonian, the rotation coefficients of
the initial metric gii(u) satisfy βik(u) = ∂iHk(u)/Hi(u) = ∂i(Hk(u)vk(u))/Hi(u)vi(u).
Moreover, vi(u) = ∂iM(u)/∂iN(u) = ∂iA(u)/∂iB(u). Using the above expressions, it is
straightforward to verify that the reciprocal rotation coefficients satisfy

β̂ik(u) ≡ ∂iĤk(u)

Ĥi(u)

= βik − (M − Nvk)Hk∂iB

Hi(BM − AN)
+

(M − Nvk)Hk∂iN(A − Bvi)

(BM − AN)(M − Nvi)Hi

+
Hk(vi − vk)∂iN

(M − Nvi)Hi

= βik(u) − Ĥk(u)
∂iB(u)

Hi(u)
− Ĥk(u)v̂k(u)

∂iN(u)

Hi(u)
.

For the diagonal metric ĝii (u), the only possible nonzero elements of the Riemannian curvature
tensor are R̂

ij

ik(u) (i �= j �= k �= i) and R̂
ij

ij (u) (i �= j). To prove R̂
ij

ik(u) = 0 (i �= j �= k �= i),
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we use

∂j β̂ik(u) − β̂ij (u)β̂jk(u) = ∂j

(
βik − Ĥk

∂iB

Hi

− Ĥkv̂k

∂iN

Hi

)

−
(

βij − Ĥj

∂iB

Hi

− Ĥj v̂j

∂iN

Hi

)(
βjk − Ĥk

∂jB

Hj

− Ĥkv̂k

∂jN

Hj

)

= ∂jβik − βijβjk − Ĥkv̂kHi∇ i∇jN(u) − ĤkHi∇ i∇jB(u),

that is R̂
ij

ik(u) = 0 if and only if ∇ i∇jB(u) = 0 = ∇ i∇jN(u) (i �= j). Indeed, the Darboux
equations

∂jβik(u) − βij (u)βjk(u) = 0

are equivalent to the condition R
ij

ik(u) = 0. By hypothesis, g̃ii (u) = gii(u)/f i(ui) is a flat
metric, then the Christoffel symbols of the two metrics satisfy �̃i

ij (u) = �i
ij (u) (i �= j), so

that ∇ i∇jB(u) = 0 = ∇ i∇jN(u) (i �= j) and, finally, R̂
ij

ik(u) = 0.
To prove (13), we set

R̂ik
ik (u) = − �̂ik(u)

Ĥk(u)Ĥi(u)
(i �= k), where �̂ik(u) = ∂iβ̂ik + ∂kβ̂ki +

∑
m�=i,k

β̂mi β̂mk.

Then

�̂ik(u) = �ik − Ĥk

Hi

(
∂2
i B −

∑
m

�m
ii ∂mB

)
− Ĥi

Hk

(
∂2
k B −

∑
m

�m
kk∂mB

)

− Ĥkv̂k

Hi

(
∂2
i N −

∑
m

�m
ii ∂mN

)
− Ĥi v̂i

Hk

(
∂2
k N −

∑
m

�m
kk∂mN

)

+
∑
m

ĤiĤk

H 2
m

((∂mB)2 + v̂i v̂k(∂mN)2 + (v̂i + v̂k)∂mB∂mN)

= �ik − ĤkHi∇ i∇iB − ĤiHk∇k∇kB − Ĥkv̂kHi∇ i∇iN − Ĥi v̂iHk∇k∇kN

+ ĤiĤk((∇B)2 + v̂i v̂k(∇N)2 + (v̂i + v̂k)〈∇B,∇N〉)
from which (13) immediately follows. �

We now compute the reciprocal affinors and the reciprocal Hamiltonian operator of a
hydrodynamic system (7) with (nonlocal) Hamiltonian operator (6). To this aim, we introduce
the auxiliary flows

ui
τ = ni(u)ui

x = J ij (u)∂jN(u), ui
ζ = bi(u)ui

x = J ij (u)∂jB(u),

ui
t(l)

= wi
(l)(u)ui

x = J ij (u)∂jH
(l)(u),

(14)

respectively, generated by the densities of conservation laws associated to the reciprocal
transformation (10), B(u), N(u), and by the densities of conservation laws H(l)(u) associated
to the affinors wi

(l) of the Riemannian curvature tensor (5). By construction, all the auxiliary
flows commute with (1). Introducing the following closed form



dx̂ = B(u) dx + A(u) dt + P(u) dτ + Q(u) dζ +
∑

l

T (l)(u) dt(l),

dt̂ = N(u) dx + M(u) dt + R(u) dτ + S(u) dζ +
∑

l

Z(l)(u) dt(l),

dτ̂ = dτ, dζ̂ = dζ, dt̂(l) = dt(l),

(15)
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where P(u), S(u),Q(u), R(u), T (l)(u) and Z(l)(u) are defined up to additive constants, we
have

vi(u) = ∂iA(u)

∂iB(u)
= ∂iM(u)

∂iN(u)
, wi

(l)(u) = ∂iT
(l)(u)

∂iB(u)
= ∂iZ

(l)(u)

∂iN(u)
,

bi(u) = ∂iQ(u)

∂iB(u)
= ∂iS(u)

∂iN(u)
, ni(u) = ∂iP (u)

∂iB(u)
= ∂iR(u)

∂iN(u)
.

(16)

Inserting (16) into the right-hand side of (14), we easily get

ni(u) = ∇ i∇iN +
∑
(l)

ε(l)Z
(l)wi

(l), bi(u) = ∇ i∇iB +
∑
(l)

ε(l)T
(l)wi

(l). (17)

Moreover, using (15), it is easy to verify that the reciprocal auxiliary flows

ui
τ̂ = n̂i(u)ui

x̂ , ui

ζ̂
= b̂i (u)ui

x̂ , ui
t̂ (l)

= ŵi
(l)(u)ui

x̂ ,

satisfy

n̂i(u) = (niB − P + (Nni − R)v̂i) =
(

Hi

Ĥi

ni − P − v̂iR

)
,

b̂i(u) = (biB − Q + (Nbi − S)v̂i) =
(

Hi

Ĥi

bi − Q − v̂iS

)
,

ŵi
(l)(u) = (

wi
(l)B − T (l) +

(
Nwi

(l) − Z(l)
)
v̂i
) =

(
Hi

Ĥi

wi
(l) − T (l) − v̂iZ(l)

)
.

(18)

Finally,

(∇B)2 = 2Q −
∑

l

ε(l)(T
(l))2, (∇N)2 = 2R −

∑
l

ε(l)(Z
(l))2,

〈∇N,∇B〉 =
∑

l

ε(l)T
(l)Z(l) − P − S.

(19)

Then, inserting (16)–(19) into the expression of R̂
ij

ij (u), we get the following.

Theorem 2.2. Let gii(u) be the metric for the Hamiltonian hydrodynamic system (7), with
Christoffel symbols �i

jk(u) and affinors wi
(l). Then, after the reciprocal transformation (10),

the nonzero components of the reciprocal Riemannian curvature tensor are

R̂
ij

ij (u) =
∑

l

ε(l)ŵi
(l)(u)ŵ

j

(l)(u) + v̂i (u)n̂j (u) + v̂j (u)n̂i(u) + b̂i (u) + b̂j (u), i �= j,

and the reciprocal Hamiltonian operator takes the form

Ĵ ij (u) = ĝii (u)

(
δi
j

d

dx̂
− �̂

j

ik(u)uk
x̂

)
+
∑

l

ε(l)ŵi
(l)(u)ui

x̂

(
d

dx̂

)−1

ŵ
j

(l)(u)u
j

x̂

+ b̂i (u)ui
x̂

(
d

dx̂

)−1

u
j

x̂ + ui
x̂

(
d

dx̂

)−1

b̂j (u)u
j

x̂

+ n̂i (u)ui
x̂

(
d

dx̂

)−1

v̂j (u)u
j

x̂ + v̂i (u)ui
x̂

(
d

dx̂

)−1

n̂j (u)u
j

x̂ , (20)

where the reciprocal metric ĝii (u) = 1/ĝii(u) and the reciprocal affinors n̂i(u), b̂i(u) and
ŵi

(l)(u) have been defined in (12) and (18), respectively.
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Corollary 2.3. In the special case, when the reciprocal transformation changes only x
(N(u) = 0 and M(u) = 1 in (10)), then the nonzero components of the transformed curvature
tensor take the form

R̂
ij

ij (u) = B2(u)R
ij

ij (u) + B(u)(∇ i∇iB(u) + ∇j∇jB(u)) − (∇B(u))2

=
∑

l

ε(l)ŵi
(l)(u)ŵ

j

(l)(u) + b̂i (u) + b̂j (u). (21)

In the special case, when the reciprocal transformation changes only t (B(u) = 1 and
A(u) = 0 in (10)), then the nonzero components of the transformed curvature tensor satisfy

R̂
ij

ij (u) = M2R
ij

ij + M(vj∇ i∇iN + vi∇j∇jN) − vivj (∇N)2

(M − Nvi)(M − Nvj )

=
∑

l

ε(l)ŵi
(l)(u)ŵ

j

(l)(u) + v̂i (u)n̂j (u) + v̂j (u)n̂i(u). (22)

3. On bi-Hamiltonicity of the reciprocal system

Bi-Hamiltonicity [20] is a relevant property for a Hamiltonian system (see [2, 4, 8] and
references therein). In this section, we suppose that the initial hydrodynamic system (7)
ui

t = vi(u)ui
x, i = 1, . . . , n, possesses a bi-Hamiltonian structure, that is, it possesses two

non-degenerate compatible Poisson structures J
ij
α (u), α = 1, 2 and prove that the reciprocal

system is still bi-Hamiltonian.
We recall that the Poisson structures J

ij

1 (u) and J
ij

2 (u) are compatible if the linear
combination

J
ij

1 (u) + λJ
ij

2 (u)

is a non-degenerate Poisson structure for an arbitrary constant λ. Let us suppose that the
diagonal metrics gii

(α) are associated to the Poisson structures J
ij
α (u), α = 1, 2 of the form (3)

or (6). If the second metric gii
(2) is of the form gii

(2) = gii
(1)f

i(ui), where f i(ui) is an arbitrary

function of one variable, then J
ij

1 (u) + λJ
ij

2 (u) is a Poisson operator associated to the metric
[24]

gii
(1)(u) + λgii

(2)(u),

for arbitrary constants λ.
A natural question is whether, reciprocal transformations preserve the compatibility of

Poisson brackets. Under the action of a linear reciprocal transformation, t̂ = bx + at, x̂ =
nx + mt , with a, b,m, n constants such that (bm − an) �= 0, the reciprocal to a local
Hamiltonian structure is local (see [26, 29]) and bi-Hamiltonicity is preserved [24, 30].

Theorem 3.1. Suppose that the hydrodynamic system (7), ui
t = vi(u)ui

x, i = 1, . . . , n,
possesses a bi-Hamiltonian structure such that the associated metrics are non-singular,
diagonal and of the form gii

(1) and gii
(2) = gii

(1)f
i(ui). Then, after the transformation (12),

the reciprocal system ui
t̂

= v̂i (u)ui
x̂ , i = 1, . . . , n, still possesses a (possibly nonlocal) bi-

Hamiltonian structure.

To prove the theorem, it is sufficient to show that the corresponding transformed Poisson
operators Ĵ

ij

1 (u) and Ĵ
ij

2 (u) of the form (20) are compatible, namely

Ĵ
ij

λ = Ĵ
ij

1 (u) + λĴ
ij

2 (u),
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is an Hamiltonian operator associated to the metric

ĝii
λ = ĝii

(1) + λĝii
(1)f

i(ui). (23)

It is straightforward to show that the local part of the operator Ĵ
ij

λ is linear in λ. In order to
show that the nonlocal part is also linear is λ it is sufficient to use a result of [24] which says
that the curvature tensor of a metric of the form ĝii

λ defined in (23) is linear in λ.
In the next sections, we consider the hydrodynamic type system (7) with a Hamiltonian

structure associated to either a flat or a constant curvature or a conformally flat metric
gii

(α)(u), α = 1, 2, and give conditions for the flatness of the reciprocal metric ĝii
(α)(u). If

ĝii
(α)(u), α = 1, 2 are both flat and the initial system is bi-Hamiltonian, then, by the theorem

above, the reciprocal system possesses a flat bi-Hamiltonian structure.

4. Conditions for reciprocal flat metrics when only x changes

In this and the following sections, we suppose that the initial hydrodynamic system
ui

t = vi(u)ui
x, i = 1, . . . , n is Hamiltonian as in (7) and the associated Hamiltonian operator

J ij (u) is as in (3) or (6), and we look for the necessary and sufficient conditions such that,
after a reciprocal transformation of type (10), one of the reciprocal metrics be flat. Since
the reciprocal transformation dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt , is the
composition of a transformation of the variable x and a transformation of the variable t, we
start our investigation with reciprocal transformations in which only the x variable changes.

In this section, using notations settled in sections 2 and 3, we give the complete set of the
necessary and sufficient conditions for the reciprocal metric to be flat, when n � 3 and the
initial non-singular metric gii(u) is either flat or of constant curvature c or conformally flat
with affinors wi(u). Then the extended reciprocal transformation (15) is

dx̂ = B(u) dx + A(u) dt + P(u) dτ + Q(u) dζ + T (u) dtw, t̂ = t, τ̂ = τ ; t̂w = tw.

(24)

Remark 4.1. Let bi(u) and wi(u) be as in (14). The quantities Q(u) and T (u) in (24) satisfy
the relations

bi(u) = ∂iQ(u)

∂iB(u)
, wi(u) = ∂iT (u)

∂iB(u)
.

Since (24) is a closed form, Q(u) and T (u) satisfy the relation

Q(u) = 1
2 (∇B(u))2 + B(u)T (u). (25)

Note that

• T (u) = 0 if gii(u) is flat;
• T (u) = c

2B(u) if gii(u) is of constant curvature c.

After the reciprocal transformation (24), the metric ĝii (u) reciprocal to gii(u), is flat if
and only if the rhs in (21) is zero, ∀i, k = 1, . . . , n, i �= k, that is

B2(u)(wi(u) + wk(u)) + B(u)(∇ i∇iB(u) + ∇k∇kB(u)) − (∇B(u))2 ≡ b̂i (u) + b̂k(u) = 0.

(26)

Equation (26) depends only on the initial Poisson structure and on the density of conservation
law B(u) in the reciprocal transformation. The above formula also shows that the class of
metrics which are either flat or of constant curvature or conformally flat is left invariant by
reciprocal transformations of the independent variable x and that ĝii (u) is flat if and only if
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the reciprocal affinor b̂i (u) ≡ 0, i = 1, . . . , n. The next theorem gives the necessary and
sufficient conditions for b̂i (u) ≡ 0 in function of the initial system.

Theorem 4.2. Let the contravariant non-singular diagonal metric gii(u) associated to the
initial system (7) be either flat or of constant curvature c or conformally flat with affinors
wi(u). Let dx̂ = B(u) dx + A(u) dt, dt̂ = dt , with B(u) �≡ constant . Then the reciprocal
metric ĝii (u) is flat if and only if there exists a constant κ such that

Q(u)

B(u)
≡ (∇B(u))2

2B(u)
+ T (u) = κ, (27)

where Q(u) and T (u) are as in remark 4.1. If in (27) κ = 0, then B(u) is a Casimir
associated to the metric gii(u); if κ �= 0 in (27) then B(u) is proportional to a density of
momentum associated to the metric gii(u).

Proof. Since

∂i(∇B(u))2 = 2∂iB(u)∇ i∇iB(u), (28)

(26) is equivalent to

0 = B2(u)wi(u) + B(u)∇ i∇iB(u) − 1

2
(∇B(u))2 = B(u)bi(u) − Q(u)

= B2(u)

∂iB(u)
∂i

(
Q(u)

B(u)

)
, i = 1, . . . , n, (29)

where Q(u) is as in (25) and statement (27) immediately follows.
Finally, inserting (27) into the expression of the auxiliary flow bi(u), we get

bi(u) ≡ ∂iQ(u)

∂iB(u)
= κ, i = 1, . . . , n. �

Equation (27) settles quite restrictive conditions on the density of conservation law B(u)

in the reciprocal transformation for which we may hope that the reciprocal metric be flat.
The following theorem shows that, conversely, if B(u) is either a Casimir or a density of
momentum associated to the metric gii(u) then the reciprocal metric ĝii (u) is, at worse, of
constant curvature.

Theorem 4.3. Let the contravariant non-singular diagonal metric gii(u) associated to the
initial system (7) be either flat or of constant curvature c or conformally flat with affinors
wi(u) and T (u) as in remark 4.1. Let B(u) be either a Casimir (b = 0) or a density of
momentum (b = 1) associated to the metric gii(u). Then, under the reciprocal transformation
dx̂ = B(u) dx + A(u) dt, dt̂ = dt , the reciprocal metric ĝii (u) is either flat or of constant
curvature ĉ, where

ĉ = 2bB(u) − 2B(u)T (u) − (∇B(u))2. (30)

Proof. Let B(u) be as in the hypothesis, then (21) becomes

R̂ik
ik (u) = B2(u)(wi(u) + wk(u)) + B(u)(∇ i∇iB(u) + ∇k∇kB(u)) − (∇B(u))2

= 2bB(u) − 2B(u)T (u) − (∇B(u))2,

and, for l = 1, . . . , n, we have

∂l(2bB(u) − 2B(u)T (u) − (∇B(u))2) = 2B(u)(wl(u)∂lB(u) − ∂lT (u)) = 0,

from which we conclude that R̂ik
ik (u) is a constant function. �
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The above necessary and sufficient conditions take a particular simple form in the case in
which the initial metric is flat.

Corollary 4.4. Let gii(u) be the flat metric for DN system (3) and dx̂ = B(u) dx + A(u) dt

be a reciprocal transformation. Then the reciprocal metric ĝii (u) = B2(u)gii(u) is flat if
and only if one of the following conditions hold true:

(1) B and A are constant functions;
(2) B(u) is a Casimir of the metric gii(u) and (∇B(u))2 = 0;
(3) B(u) is a density of momentum for the metric gii(u) and (∇B(u))2 = 2B(u).

Remark 4.5. If B(u) and N(u) are the nontrivial independent Casimirs of the flat metric
gii(u) and (∇B(u))2 �= 0, then there exist a constant α and A(u) such that, under
the reciprocal transformation dx̂ = (αB(u) + N(u)) dx + A(u) dt , the reciprocal metric
ĝii (u) = (αB(u) + N(u))2gii(u) is flat.

If B(u) is a density of momentum for the flat metric gii(u) and (∇B(u))2 −2B(u) = 2α,
then under the reciprocal transformation dx̂ = (B(u) + α) dx + A(u) dt , the reciprocal metric
ĝii (u) = (B(u) + α)2gii(u) is flat.

5. Conditions for reciprocal flat metrics when only t changes

In this section, we give the complete set of the necessary and sufficient conditions for a
flat reciprocal metric, when n � 3, gii(u) is the flat metric associated to the initial DN
hydrodynamic type system

ui
t = vi(u)ui

x = J ij (u)∂iH(u), (31)

and the reciprocal transformation is x̂ = x, dt̂ = N(u) dx+M(u) dt . Under these hypotheses,
the reciprocal metric ĝii (u) is flat if and only if the rhs in (22) is identically zero ∀i, k, i �= k,
that is

M(u)(vj (u)∇ i∇iN(u) + vi(u)∇j∇jN(u)) − vi(u)vj (u)(∇N)2(u) ≡ 0. (32)

Equation (32) explicitly depends on the initial Poisson structure, on the density of conservation
law N(u) in the reciprocal transformation and on the density of Hamiltonian H(u) associated
to the metric gii(u).

Theorem 5.1. Let gii(u) be the diagonal non-degenerate flat metric for (3) and let vi(u) �=
constant, i = 1, . . . , n. Let dt̂ = N(u) dx + M(u) dt, dx̂ = dx, with N(u) �≡ constant .
Then the reciprocal metric ĝii (u) is flat if and only if there exists a constant κ such that

(∇N(u))2

2M(u)
= κ. (33)

If κ = 0, then N(u) is a Casimir associated to the metric gii(u); if κ �= 0, then
N(u) = κH(u), where H(u) is a density of Hamiltonian associated to the metric gii(u).

Proof. Equation (32) is equivalent to

0 = M(u)(vk(u)ni(u) + vi(u)nk(u)) − vi(u)vk(u)(∇N(u))2

= M2(u)

∂iN(u)∂kN(u)

(
∂iM(u)∂k

(
(∇N(u))2

2M(u)

)
+ ∂kM(u)∂i

(
(∇N(u))2

2M(u)

))
,
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∀i, k = 1, . . . , n, i �= k. If (33) holds, then R̂ik
ik ≡ 0, i, k = 1, . . . , n, i �= k, and ni(u) is

either the null velocity flow (N(u) Casimir of the initial metric) or

ni(u) ≡ ∂i(∇N(u))2

2∂iN(u)
= κ

∂iM(u)

∂iN(u)
= κvi(u), i = 1, . . . , n.

Vice versa, suppose that the reciprocal metric is flat and (∇N(u))2 �= 0, then ∀i, k, l =
1, . . . , n, i �= k, it is straightforward to verify

0 ≡ ∂l(M(u)(vi(u)nk(u) + vk(u)ni(u)) − vi(u)vk(u)(∇N(u))2)

= ∂lM(u)(vi(u)nk(u) + vk(u)ni(u)) − vi(u)vk(u)(∇N(u))2

= −vi(u)vk(u)(∇N(u))2∂l log

(
(∇N(u))2

M(u)

)
. �

Equation (33) settles quite restrictive conditions on the density of conservation law N(u)

in order to preserve flatness of the metric. The following theorem shows that, conversely, if
N(u) is either a Casimir or a density of Hamiltonian associated to the flat metric gii(u) then
the reciprocal metric ĝii (u) is either flat or associated to an hypersurface in the Euclidean
space.

Theorem 5.2. Let gii(u) be a contravariant flat non-singular diagonal metric for (31) and let
N(u) be either a Casimir or a density of Hamiltonian associated to the metric gii(u). Then,
under the reciprocal transformation dt̂ = N(u) dx +M(u) dt, dx̂ = dx, the reciprocal metric
ĝii (u) is either flat or the reciprocal Poisson operator takes the form

Ĵ ij (u) = ĝii (u)δ
j

i

d

dx̂
− ĝii (u)�̂

j

iku
k
x̂ + γ v̂iui

x̂

(
d

dx̂

)−1

v̂j
xu

j
x, (34)

with γ constant.

Proof. If N(u) is a Casimir and (∇N(u))2 = γ , then R̂ik
ik (u) = −γ v̂i(u)v̂k(u),∀i, k =

1, . . . , n, i �= k and the assertion easily follows.
If N(u) is a density of Hamiltonian and M(u) = 1

2 (∇N(u))2 + γ , then R̂ik
ik (u) =

γ v̂i(u)v̂k(u),∀i, k = 1, . . . , n, i �= k, and the assertion easily follows. �

Remark 5.3. If B(u) and N(u) are the nontrivial independent Casimirs of the flat metric
gii(u) and (∇N(u))2 �= 0, then there exist a constant α and M(u) such that, under the
reciprocal transformation dt̂ = (αN(u) + B(u)) dx + M(u) dt , the reciprocal metric ĝii (u) is
flat.

If N(u) is a density of Hamiltonian for the flat metric gii(u) and (∇N(u))2 − 2M(u) =
2α, then under the reciprocal transformation dt̂ = N(u) dx + (M(u) + α

)
dt , the reciprocal

metric ĝii (u) is flat.

6. Conditions for flat reciprocal metrics when the transformation changes both x and t

Let the initial hydrodynamic system be Hamiltonian as in (7),

ui
t = vi(u)ui

x = J ij (u)∂iH(u), (35)

where J ij (u) is the Hamiltonian operator as in (3) or (6), is associated to the initial metric
gii(u) either flat or of constant curvature c or conformally flat with affinors wi(u).

The reciprocal transformation

dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt
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is the composition of the following two reciprocal transformations of one variable

dx̃ = B(u) dx + A(u) dt, dt̃ = dt,

dx̂ = dx̃, dt̂ = Ñ(u) dx̃ + M̃(u) dt̃ ,

where

Ñ(u) = N(u)

B(u)
, M̃(u) = M(u)B(u) − N(u)A(u)

B(u)
. (36)

In view of the results of the previous sections, it is natural to restrict the attention to the case in
which B(u) is either a Casimir or a momentum density associated to the metric gii(u). Then,
after the first reciprocal transformation, the metric g̃ii (u) is either flat (ĉ = 0) or of constant
curvature ĉ �= 0, where ĉ is the expression on the right-hand side of (30). Let ĉ = 0, then
after the second reciprocal transformation, by theorem 5.1 the metric ĝii (u) is flat if and only
if there exists a constant κ̃ such that

(∇̃Ñ(u))2

2M̃(u)
= κ̃ . (37)

We want to express (37) in an equivalent way as a function of the initial metric gii(u) and of
the density of conservation laws N(u) and B(u).

Remark 6.1. Let ni(u) and wi(u) be as in (14). The quantities R(u) and Z(u) in (15) satisfy
the relations

ni(u) = ∂iR(u)

∂iN(u)
, wi(u) = ∂iZ(u)

∂iN(u)
.

Since (15) is a closed form, R(u) and Z(u) satisfy the relation

R(u) = 1
2 (∇N(u))2 + N(u)Z(u). (38)

Note that

• Z(u) = 0 if gii(u) is flat;
• Z(u) = c

2N(u) if gii(u) is of constant curvature c.

Inserting (36) into (37), we get

κ̃

(
M(u) − N(u)

B(u)
A(u)

)
− 1

2
(∇N(u))2 − N2(u)

2B2(u)
(∇B(u))2

+
N(u)

B(u)
〈∇B(u),∇N(u)〉 = 0. (39)

If κ̃ = 0 in (39), then either N(u) = ν1B(u),M(u) = ν1A(u) + ν2, with ν1, ν2 nonzero
constants, or there exists a constant ν3 such that

(∇N(u))2

2N(u)
+ Z(u) = ν3. (40)

Comparing (40) with (33) and (38), we conclude that N(u) is either a Casimir (ν3 = 0) or
proportional to a momentum density (ν3 �= 0) for the initial metric gii(u).

If κ̃ �= 0 in (39), then there exists a constant ν4 such that

(∇N(u))2

2
+ Z(u)N(u) = κ̃M(u) + ν4N(u),

that is N(u) is the linear combination with constant coefficients of a Hamiltonian density
H(u) and a momentum density associated to the initial metric gii(u).
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In the next theorem, we summarize the above discussion. We use the notations settled in
remarks 4.1 and 6.1.

Theorem 6.2. Let the non-singular metric gii(u) of system (35) be either flat or of constant
curvature c or conformally flat with affinors wi(u). Let B(u) be either a Casimir (b = 0) or
a momentum density (b = 1) associated to the metric gii(u) such that

(∇B(u))2

2B(u)
+ T (u) = b, (41)

where T (u) has been defined in remark 4.1. Then, after the reciprocal transformation dx̂ =
B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt , the reciprocal metric ĝii (u) is flat if and only if
either there exist nonzero constants ν1 and ν2 such that N(u) = ν1B(u),M(u) = ν1A(u)+ν2

or there exist (possibly zero) constants ν3, ν4 such that

(∇N(u))2

2
+ Z(u)N(u) = ν3M(u) + ν4N(u), (42)

where Z(u) has been defined in remark 6.1. If (42) holds true then N(u) is either a
Casimir (ν3 = ν4 = 0) or a momentum density (ν3 = 0, ν4 = 1) or a Hamiltonian density
(ν3 = 1, ν4 = 0) or a linear combination with constant coefficients of the Casimirs, momentum
and Hamiltonian density for the initial metric gii(u).

The above theorem is far from setting the whole set of the necessary and sufficient
conditions for the reciprocal metric to be flat. In the next theorem, we give another set of
sufficient conditions for the flat reciprocal metric when B(u) = H(u) is the Hamiltonian
density in (35). Again we use the notations settled in remarks 4.1 and 6.1.

Theorem 6.3. Let the non-singular metric gii(u) of system (35) be either flat or of constant
curvature c or conformally flat with affinors wi(u). Let J ij (u) be the Hamiltonian operator
associated to gii(u) and let

ui
t = vi(u)ui

x = J ij (u)∂jB(u).

Under the reciprocal transformation dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt , the
reciprocal metric ĝii (u) is flat if there exists a constant ν5 such that

A(u) = 1

2
(∇B(u))2 + T (u)B(u),

(∇N(u))2

2N(u)
+ Z(u) = ν5, (43)

where T (u) and Z(u) have been defined in remarks 4.1 and 6.1, respectively. If (43) holds
true then N(u) is either a Casimir (ν5 = 0) or a momentum density (ν5 = 1) for the initial
metric gii(u).

Proof. Under the hypotheses of the theorem, after the first reciprocal transformation

dx̃ = B(u) dx + A(u) dt, dt̃ = dt,

the transformed metric g̃ii (u) = gii(u)B2(u) is conformally flat with curvature tensor

R̃ik
ik (u) = b̃i (u) + b̃k(u).

After the second reciprocal transformation,

dx̂ = dx̃, dt̂ = Ñ(u) dx̃ + M̃(u) dt̃ ,

with Ñ(u) and M̃(u) as in (36), the transformed metric ĝii (u) has Riemannian curvature
tensor

R̂ik
ik (u) = M̃2(b̃i + b̃k) + M̃(b̃i∇̃k∇̃kÑ + b̃k∇̃k∇̃kÑ) − b̃i b̃k(∇̃Ñ)2

(M̃ − b̃kÑ)(M̃ − b̃i Ñ)
,
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where we have dropped u in the rhs. The condition R̂ik
ik (u) ≡ 0 is satisfied in the above

relation if

M̃(u)∂kÑ(u) +
1

2
∂k(∇̃Ñ(u))2 − (∇̃Ñ(u))2

2M̃(u)
∂kM̃(u) = 0. (44)

Inserting (36) and g̃ii (u) = gii(u)B2(u) into (44), we get

M − AN

B
+ B∇k∇kN − N∇k∇kB − 〈∇B,∇N〉 +

N

B
(∇B)2

− B

2

(
(∇N)2 +

N2

B2
(∇B)2 − 2

N

B
〈∇B,∇N〉

)
Bbk − A

MB − NA
≡ 0. (45)

Let A(u) and N(u) be as in (43), then

M(u) = 〈∇B(u),∇N(u)〉 + N(u)T (u) + B(u)Z(u) − ν5B(u),

and (45) is identically satisfied. �

Remark 6.4. If the initial metric of system (35) is flat, (43) is equivalent to

A(u) = 1
2 (∇B(u))2,

and N(u) is either a Casimir such that (∇N(u))2 = 0 or N(u) is a momentum density such
that (∇N(u))2 − 2ν5N(u) = 0.

7. Examples: flat metrics on moduli space of hyperelliptic curves

Flat metrics on Hurwitz spaces have been studied by Dubrovin in the framework of Frobenius
manifolds [3]. The metrics considered in [3] are of Egorov type (see [2, 3, 19] and references
therein for the role of the algebro-geometric approach in the theory of hydrodynamic systems).
In this section, we restrict ourselves to the moduli space of hyperelliptic Riemann surfaces
and on this space we derive flat metrics which are not of Egorov type.

Let us consider the hyperelliptic curves of genus g:

C :=
{

P = (λ,w) ∈ C
2

∣∣∣∣∣w2 =
2g+1∏
k=1

(λ − uk)

}
, uk �= uj , k �= j. (46)

The distinct parameters u1, . . . , u2g+1 are the local coordinates on the moduli space of
hyperelliptic curves. On the Riemann surface C, we define the meromorphic bi-differential
W(P,Q) as

W(P,Q) := dP dQ log E(P,Q), (47)

where E(P,Q) is the prime form [9]. W(P,Q) is a symmetric bi-differential on C × C with
second-order pole at the diagonal P = Q with biresidue 1 and the properties∮

αk

W(P,Q) = 0;
∮

βk

W(P,Q) = 2π iωk(P ); k = 1, . . . , g. (48)

Here, {αk, βk}gk=1 is the canonical basis of cycles on C and {ωk(P )}gk=1 is the corresponding set
of holomorphic differentials normalized by

∮
αl

ωk = δkl, k, l = 1, . . . , g. The dependence of
the bi-differential W on branch points of the Riemann surface is given by the Rauch variational
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formulae [17]:

dW(P,Q)

duj
= 1

2
W(P,Pj )W(Q,Pj ), (49)

where W(P,Pj ) denotes the evaluation of the bi-differential W(P,Q) at Q = Pj with respect
to the standard local parameter xj (Q) =

√
λ(Q) − uj near the ramification point Pj :

W(P,Pj ) := W(P,Q)

dxj (Q)

∣∣∣∣
Q=Pj

. (50)

We consider the Abelian differentials

dps(Q) = − 1

2s − 1
Res
P=∞

λ(P )
2s−1

2 W(Q,P ), s = 1, 2, . . . , (51)

which are normalized differentials of the second kind with a pole at infinity of order 2s and
behaviour

dps(Q) = − dz

z2s
+ regular terms, Q → ∞,

where z = 1/
√

λ is the local coordinate in the neighbourhood of infinity.

Theorem 7.1. [3] The diagonal metrics

g0
ii = Res

Q=Pi

[
dp2

1(P )

dλ

]
(dui)2 = 1

2
(dp1(u

i))2(dui)2, g1
ii = g1

ii

ui
, (52)

where dp1 is the differential (51), are compatible flat metrics on the moduli space of
hyperelliptic Riemann surfaces.

The correspondent flat coordinates of the metric g0
ii are the following [3]:

h0 = − Res∞ λ
1
2 dp1, ra = 1

2π i

∮
βa

dp1, sa
0 = − 1

2π i

∮
αa

λ dp1, a = 1, . . . , g.

(53)

The flat coordinates of the metric g1
kk are obtained by the relations

p1(0), ra = 1

2π i

∮
βa

dp1, sa
1 = − 1

2π i

∮
αa

log λ dp1, a = 1, . . . , g. (54)

We observe that the coordinates ra, a = 1, . . . , g, are the common Casimirs of the metrics g0
ii

and g1
ii .

Let J
ij

0 and J
ij

1 be the Hamiltonian operators associated to the metrics (g0)ii and (g1)ii ,
respectively, and let us consider the Hamiltonian densities

hs = − Res∞ λ
2s+1

2 dp1, s = 0, 1, . . . . (55)

Then, the equations

ui
ts

= J
ij

0

δhs+1

δuj
= J

ij

1

δhs

δuj
= vi

(s)u
i
x, s = 0, 1, . . . (56)

correspond to the KdV–Whitham hierarchy with t0 = x and t1 = t [14, 18].
The metrics g0

ii

/
(ui)s, s = 2, 3, . . . , are not flat and the nonzero elements of the associated

curvature tensor R
ij

ij (u, s) are
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R
ij

ij (u, s) = − 1

2
√

g0
iig

0
jj

(
2g+1∑
k=1

(uk)s∂ukW(Pi, Pj ) +
s

2
((ui)s−1 + (uj )

s−1))W(Pi, Pj )

)
. (57)

Formulae (57) hold true also for s = 0, 1, where the rhs identically vanishes (a proof may be
found in [3, 16]).

In the next lemma, we evaluate the curvature tensor (57) for s = 2, 3.

Lemma 7.2. The metrics

g2
ii = g0

ii

(ui)2
, g3

ii = g0
ii

(ui)3
(58)

are of constant curvature and conformally flat, respectively. The nonzero elements of the
curvature tensor (57) take the form

R
ij

ij (u, s = 2) = −1

2
, R

ij

ij (u, s = 3) = −3

2

(
dp2(Pi)

dp1(Pi)
+

dp2(Pj )

dp1(Pj )

)
, (59)

with dp1,2 as in (51).

Proof. Using the fact that (57) vanishes for s = 0, 1 we obtain

2g+1∑
k=1

(uk)s∂ukW(Pi, Pj ) =
∑
k �=i,j

(uk)s∂kW(Pi, Pj ) +
(ui)s

ui − uj

∑
k �=i,j

(uj − uk)∂kW(Pi, Pj )

− (uj )s

ui − uj

∑
k �=i,j

(ui − uk)∂kW(Pi, Pj ) +
(ui)s − (uj )s

ui − uj
W(Pi, Pj ).

Using (49) and the residue theorem, we rewrite the above in the form

2g+1∑
k=1

(uk)s∂ukW(Pi, Pj ) = − Res
P=Pi ,Pj ,∞

λ(P )s
W(Pi, P )W(Pj , P )

dλ(P )

− (ui)s

ui − uj
Res

P=Pi ,∞
(λ(Pj ) − λ(P ))

W(Pi, P )W(Pj , P )

dλ(P )

+
(uj )s

ui − uj
Res

P=Pj ,∞
(λ(Pi) − λ(P ))

W(Pi, P )W(Pj , P )

dλ(P )
.

The last two terms in the rhs of the above expression are holomorphic at infinity so that

2g+1∑
k=1

(uk)s∂ukW(Pi, Pj ) +
s

2
((ui)s−1 + (uj )

s−1)W(Pi, Pj )

= − Res
P=∞

λ(P )s
W(Pi, P )W(Pj , P )

dλ(P )

− (ui)s Res
P=Pi

[(
1 +

λ(Pj ) − λ(P )

ui − uj

)(
W(Pi, P )W(Pj , P )

dλ(P )

)]

− (uj )s Res
P=Pj

[(
1 +

λ(Pi) − λ(P )

uj − ui

)(
W(Pi, P )W(Pj , P )

dλ(P )

)]
.

For s = 0, 1, the first term in the rhs of the above expression vanishes because it is holomorphic
at infinity. Since for s = 0, 1, the curvature tensor R

ij

ij (u, s = 0, 1) is equal to zero, it follows
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that the last two terms of the above expression are identically zero. So we conclude that the
curvature tensor takes the form

R
ij

ij (u, s) = −
ResP=∞

[
λ(P )s

W(Pi ,P )W(Pj ,P )

dλ(P )

]
dpi(ui) dp1(uj )

(60)

=




−1

2
, for s = 2

−3

2

(
dp2(Pi)

dp1(Pi)
+

dp2(Pj )

dp1(Pj )

)
, for s = 3.

(61)

The lemma is proved. �

As a first application of the theorems in section 4 on sufficient conditions for the reciprocal
metric to be flat, we consider the reciprocal transformation of x, dx̂ = ra dx +A(a,j) dtj , where
ra, a = 1, . . . , g, are the Casimirs common to all the metrics gs

ii , u
i
tj

= vi
(j)u

i
x is the j th

modulated flow of the KdV hierarchy (56) and A(a,j) makes the transformation closed. Then
the following results can be obtained in a straightforward way by applying theorem 4.2.

Theorem 7.3. Let gs
ii , s = 0, 1, 2, 3, be the metrics defined in (52) and (58). Then the

reciprocal metrics

gs
ii

(ra)2
, a = 1, . . . , g, s = 0, 1, 2, 3, (62)

where ra, a = 1, . . . , g, are the Casimirs defined in (53), are flat compatible diagonal metrics.

Proof. In order to prove that the metrics (62) are flat, it is sufficient to verify the condition
(27). For s = 0 and s = 1, the quantity T defined in remark 4.1 is equal to zero and the
condition (27) takes the form

2g+1∑
i=1

(∂ir
a)2(ui)s

g0
ii

= 0, s = 0, 1, a = 1, . . . , g.

In the following, we prove the above relation. Using the variational formula (49), we obtain

∂ir
a = 1

2 dp(Pi)ωa(Pi),

so that
2g+1∑
i=1

(∂ir
a)2(ui)s

g0
ii

= 1

2

2g+1∑
i=1

(ui)sωa(Pi)
2

=
2g+1∑
i=1

Res
P=Pi

λs(ωa(λ))2

dλ
= 0, s = 0, 1, a = 1, . . . , g, (63)

because λs(ω(λ))2/dλ, s = 0, 1, is a differential with simple poles at the branch points Pi and
regular at infinity and therefore, the sum of all its residue is equal to zero. For the metric g2

ii ,
the condition (27) takes the form

2g+1∑
i=1

(∂ir
a)2(ui)2

g0
ii

− 1

2
(ra)2 = 0, s = 0, 1, a = 1, . . . , g. (64)
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To prove the above relation, we use (63) and then evaluate the residue at infinity obtaining

2g+1∑
i=1

(∂ir
a)2(ui)2

g0
ii

=
2g+1∑
i=1

Res
P=Pi

λ2(ωa(λ))2

dλ
= − Res

P=∞
λ2(ωa(λ))2

dλ
= 1

2
(ra)2

because of the Riemann bilinear relations

ra = Res
P=∞

p1(λ)ωa(λ) = Res
P=∞

√
λωa(λ). (65)

For the metric g3
ii , the condition (27) takes the form

2g+1∑
i=1

(∂ir
a)2(ui)3

g0
ii

− 3

4π i
ra

∮
ba

dp2 = 0, a = 1, . . . , g,

since T = − 3
4π i

∮
ba

dp2. To prove the above relation, we use (63) and then evaluate the
residue at infinity obtaining

2g+1∑
i=1

(∂ir
a)2(ui)3

g0
ii

= − Res
P=∞

λ3(ωa(λ))2

dλ
= 3

4π i
ra

∮
ba

dp2,

because of the Riemann bilinear relations (65) and

1

2π i

∮
ba

dp2 = Res
P=∞

p2(λ)ωa(λ) = 1

3
Res
P=∞

λ
3
2 ωa(λ).

The theorem is proved. �

As a second application of the theorems on sufficient conditions for the reciprocal metric
to be flat, we consider the reciprocal transformation of x, dx̂ = p1(0) dx + A(p,l) dtl , where
p1(0) is the Casimir associated to g1

ii (u) which generates the modulated first negative KdV
flow (index l = −1 in the transformation). In the case of genus g = 1, we showed in [1] that
this reciprocal transformation relates the modulated first negative KdV flow and the modulated
Camassa–Holm equations. The next theorem generalizes such relation to any genus and can
be obtained in a straightforward way by applying theorem 4.2.

Theorem 7.4. Let gs
ii , s = 2, 3 be the metrics defined in (58). Then the reciprocal metrics

gs
ii

p1(0)2
, s = 2, 3, (66)

where p1(0) is the Casimir for g1
ii defined in (54), are flat compatible diagonal metrics.

Proof. In order to prove that the metrics (66) are flat, it is sufficient to verify the condition
(27). For the metric g2

ii , the condition (27) takes the form

2g+1∑
i=1

(∂ip1(0))2(ui)2

g0
ii

− 1

2(p1(0))2
= kp1(0), (67)

where k is a constant. To prove the above relation we first observe that

Res
P=∞

λ
1
2 �0(λ) = −2p1(0),

where �0(λ) is a normalized third kind differential with simple pole in
(
0,±

√∏2g+1
k=1 (−uk)

)
with residues ±1, respectively. Applying (49), we deduce

∂ip1(0) = 1
4 dp1(u

i)�0(u
i).
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Then we reduce the sum in (67) to the evaluation of a residue
2g+1∑
i=1

(∂ip1(0))2(ui)2

g0
ii

=
2g+1∑
i=1

Res
P=Pi

λ2(�0(λ))2

4 dλ
= − Res

P=∞
λ2(�0(λ))2

4 dλ
= 1

2
(p1(0))2. (68)

From the above relation, we conclude that (67) is satisfied with k = 0.
For the metric g3

ii , the condition (27) takes the form

2g+1∑
i=1

(∂ip1(0))2(ui)3

g0
ii

− 3p1(0)p2(0) = 0, (69)

because T = − 3
2p2(0). To prove the above relation, we use (68) obtaining

2g+1∑
i=1

(∂ip1(0))2(ui)3

g0
ii

= − Res
P=∞

λ3(�0(λ))2

4 dλ
= 3p1(0)p2(0),

because Resλ=∞ λ
3
2 �0(λ) = −6p2(0). The above relation shows the validity of (69). �

As a third example, we consider the Casimir h0 that generates the positive KdV modulated
flows (s = 1 in (56)).

Lemma 7.5. The metric

g0
ii

h2
0u

i
(70)

is flat with h0 the Casimir for g0
ii defined in (53). The metrics

g0
ii

h2
0

,
g0

ii

(h0ui)2
, (71)

are, respectively, with constant curvature and conformally flat.

Proof. To prove the lemma we need the relation
2g+1∑
i=1

(∂ih0)
2(ui)s

g0
ii

=
2g+1∑
i=1

(dp1(u
i))2(ui)s =

2g+1∑
i=1

Res
P=Pi

λs dpi(λ)2

dλ

= − Res
P=∞

λs dpi(λ)2

dλ
=




−2, for s = 0

2h0, for s = 1
1
2h2

0 + 2h1, for s = 2,

(72)

where h1 has been defined in (55).
In order to prove that the metric (70) is flat, it is sufficient to verify the condition (27),

where h0 is a density of momentum for the metric g0
ii

/
ui , that is there exists a constant k such

that
2g+1∑
i=1

(∂ih0)
2ui

g0
ii

= kh0

and comparing with (72) we find k = 2.
The relation (72) immediately implies that the metrics in (71) are respectively with

constant curvature −2 and conformally flat with affinors ṽi

ṽi = h0
∂ih1

∂ih0
− h1. �
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As a final example, we consider a reciprocal transformation of x and t of the form{
dx̂ = ra dx + Aa dt

dt̂ = h0 dx + M dt,
(73)

where h0 and ra are the Casimirs defined in (53) for the metric g0
ii and Aa and M are the terms

which make the above two 1-forms closed with respect to the first Whitham–KdV flow, that is

ui
t = vi

(1)u
i
x = (J 0)ij

δh2

δuj
, i = 1, . . . , 2g + 1,

where the Hamiltonian density h2 is defined in (55).
Let ĝ0

ii be the transformed metric of g0
ii given by the relation (12)

ĝ0
ii =

(
M − h0v

i

raM − Aah0

)2

g0
ii . (74)

Theorem 7.6. The reciprocal metrics

ĝ0
ii

ui
,

ĝ0
ii

(ui)2

with ĝ0
ii defined in (74) form a flat pencil of metrics.

To prove the statement, we apply theorem 6.2 with B = ra and N = h0.
Equation (63) with s = 1 gives b = 0 in theorem 6.2 and (72) for s = 1 is equivalent

to the flatness condition (53) of theorem 6.2, with ν3 = 0, ν4 = 1 and we conclude that the
metric ĝ0

ii (u)/ui is flat.
For the second metric, similarly, (64) gives b = 0 in theorem 6.2 and (72) for s = 2 is

equivalent to the flatness condition (53) of theorem 6.2, with ν3 = 1, ν4 = 0 and we conclude
that the metric ĝ0

ii (u)/(ui)2 is flat.
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